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Juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH) are autosomal recessive syndromes
of unknown etiology characterized by multiple, recurring subcutaneous tumors, gingival hypertrophy, joint con-
tractures, osteolysis, and osteoporosis. Both are believed to be allelic disorders; ISH is distinguished from JHF by
its more severe phenotype, which includes hyaline deposits in multiple organs, recurrent infections, and death within
the first 2 years of life. Using the previously reported chromosome 4q21 JHF disease locus as a guide for candidate-
gene identification, we identified and characterized JHF and ISH disease-causing mutations in the capillary mor-
phogenesis factor–2 gene (CMG2). Although CMG2 encodes a protein upregulated in endothelial cells during
capillary formation and was recently shown to function as an anthrax-toxin receptor, its physiologic role is unclear.
Two ISH family-specific truncating mutations, E220X and the 1-bp insertion P357insC that results in translation
of an out-of-frame stop codon, were generated by site-directed mutagenesis and were shown to delete the CMG-
2 transmembrane and/or cytosolic domains, respectively. An ISH compound mutation, I189T, is predicted to create
a novel and destabilizing internal cavity within the protein. The JHF family-specific homoallelic missense mutation
G105D destabilizes a von Willebrand factor A extracellular domain alpha-helix, whereas the other mutation, L329R,
occurs within the transmembrane domain of the protein. Finally, and possibly providing insight into the patho-
physiology of these diseases, analysis of fibroblasts derived from patients with JHF or ISH suggests that CMG2
mutations abrogate normal cell interactions with the extracellular matrix.

Juvenile hyaline fibromatosis (JHF [MIM 228600]) and
infantile systemic hyalinosis (ISH [MIM 236490]) are au-
tosomal recessive disorders that present in infancy with
papulonodular skin lesions, particularly of the perianal,
perinasal, and perioral areas. Affected individuals often
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develop several associated features, including multiple
subcutaneous tumors, gingival hypertrophy, flexion con-
tractures of joints, osteolytic lesions, and osteopenia
(Landing and Nadorra 1986; Fayad et al. 1987; Keser
et al. 1999). ISH is distinguished by an earlier onset,
more painful and severe course, and, as revealed by his-
tological examination, widespread deposition of hyaline
material throughout the skin, gastrointestinal tract, en-
docrine glands, and muscle (Landing and Nadorra 1986).
In addition, ISH has been associated with an increased
susceptibility to bone fractures, infections, and death in
infancy (Stucki et al. 2001). Diagnosis is generally made
on the basis of clinical findings, including distribution
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Figure 1 Radiological features of affected individual in family JHF1. A, Frontal view of both hands, revealing diffuse osteopenia and
narrowing of interarticular spaces. Multiple subluxations and contractures are present. B, Lateral view of the knee, revealing marked narrowing
of the joint space (arrow) and profound osteopenia.

of skin lesions and biopsy results that typically reveal the
presence of an abundant extracellular, acidophilic hyaline
material. The etiology of these two disorders, suggested
elsewhere to be allelic because of their significant pheno-
typic overlaps (Mancini et al. 1999), is unknown.

By use of a positional-cloning approach, the JHF dis-
ease gene was recently localized to chromosome 4q21
(Rahman et al. 2002). The 5.3-cM/6.9-Mb locus is
bounded by microsatellite marker D4S2393 centromeri-
cally and D4S395 telomerically (Kong et al. 2002; Rah-
man et al. 2002). In an attempt to further refine the locus
and to investigate the possibility that these clinically over-

lapping autosomal recessive disorders, JHF and ISH, are
indeed allelic, we first ascertained four unrelated families
with established clinical diagnoses and features consis-
tent with these syndromes (fig. 1; table 1). After obtain-
ing informed consent and institutional review board ap-
proval from the corresponding institutions, blood sam-
ples were collected from family members, and genomic
DNA was isolated. Using a dense set of microsatellite
markers spanning the linked region, we haplotyped all
available family members to look for regions that were
homozygous-by-descent. Haplotype analysis was per-
formed using eight fluorescently labeled microsatellite
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Table 1

Comparison of Features of Patients with JHF and ISH

FEATURE

FINDINGS IN FAMILYa

JHF1 JHF2 ISH1 ISH2b

Consanguinity � � � �
Ethnic origin Turkish African American Turkish Swiss
Skin:

Multiple subcutaneous tumors � � � �
Thickened firm skin � � � �
Pearly nodules � � � �
Perianal granulomas � � � �

Gingiva:
Gingival hypertrophy � � � �
Gingival fibromatosis � ? � ?

Skeletal findings:
Joint contractures � � � �
Restricted movement of joints � � � �
Painful joints � � � �
Osteoporosis � ? � �
Osteopenia � ? � �

Growth:
Failure to thrive � � � �
Stunted growth � � � �

Facial features:
Coarse face � � � �
Narrow face � � � �
Large low-set dysplastic ears � � � �

Miscellaneous:
Early death � � � �
Recurrent infections � � � �

Histology/accumulation of material:
In skin � � � �
In articular soft tissues ? � ? �

a � p feature present; � p feature absent; � p ambiguous finding; ? p unknown.
b Family ISH2 has been described elsewhere (Stucki et al. 2001).

markers (D4S2393, D4S2947, D4S2964, D4S3243,
D4S2922, D4S2932, D4S3088, and D4S395). Markers
were amplified by PCR with standard protocols, prod-
ucts were run on an ABI 3100 Genetic Analyzer (Applied
Biosystems), and electropherograms were analyzed by
the ABI Genescan and Genotyper software packages
(Perkin Elmer), as we described elsewhere (Heath et al.
2001). Microsatellite order and distances were determined
using the Marshfield, UCSC Genome Browser, and De-
code databases.

Probands in families ISH1 and JHF2 were homoallelic
for all eight markers, which, although consistent with the
previous linkage report, did not further narrow the re-
gion (fig. 2). Support for the originally defined centrom-
eric border of the JHF locus was provided by members
of the remaining two families. The centromeric bound-
ary of the region was confirmed by the nonhomozygosity
of marker D4S2393 in the JHF1 affected individual, in
whom all other tested markers were homoallelic. It is
interesting that, although the affected haplotypes of fami-
ly ISH2 suggested a potential narrowing of the distal
boundary of the region—as demonstrated by homozy-

gosity of three contiguous markers, D4S2947, D4S2964,
and D4S3243—we could not rule out the likelihood that
this merely reflected “identity-by-state.” Therefore, the
candidate-gene interval could not be conclusively nar-
rowed. This caution was found to be supported by DNA
sequence analysis (see below).

Inspection of genes in the JHF/ISH common region,
by use of a combination of public and private databases
(e.g., Celera), revealed a number of possible disease-gene
candidates, including bone morphogenetic protein 3
(BMP3), fibroblast growth factor-5 (FGF5), and capillary
morphogenesis protein 2 (CMG2). Of these, CMG2 was
immediately attractive because of its expression in endo-
thelial cells and its suggested role in binding extracellular
matrix (ECM) proteins, including laminin and collagen
IV, by virtue of its von Willebrand factor A (VWFA)–
like domain (Bell et al. 2001). In addition, the pheno-
types of murine knockouts of BMP3 and FGF5 genes
reported elsewhere were not consistent with either JHF
or ISH (Hebert et al. 1994; Daluiski et al. 2001).

Whereas CMG-2 was originally identified on the basis
of its up-regulation in endothelial cells induced to undergo
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Figure 2 Analysis of pedigrees and haplotypes in four families with JHF or ISH. Genotypes are represented by allele sizes (bp), and
markers are shown according to their physical order. Blackened symbols denote affected individuals, and shaded areas denote disease-segregating
haplotypes.

capillary formation (Bell et al. 2001), the physiologic role
of CMG-2 is unknown. It is interesting that CMG-2 not
only possesses protein-sequence similarity to the tumor
endothelial marker 8 (TEM8) gene—a cell-surface re-
ceptor that may play a role in neovascularization and is
also the human anthrax-toxin receptor (ATR)—but was
also recently shown to function as the second known
human ATR (Scobie et al. 2003). The predicted topology
of CMG-2 is similar to ATR/TEM8 in that they both have
a signal peptide, type 1 transmembrane (TM) region, and,

within the VWFA or I domain, share 60% identity (fig.
3A) (Bell et al. 2001).

We therefore directed our study to determine whether
CMG2 mutations could result in JHF and ISH. We first
analyzed all human and nonhuman EST, mRNA data,
and gene-prediction output (UCSC Genome Browser [No-
vember 2002 and April 2003 assembly dates]) to identify
possible coding regions, since several isoforms had been
predicted (Scobie et al. 2003). From this combined in-
formation, primer pairs were designed to amplify all
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Figure 3 A, Predicted CMG-2 protein domains. The protein is 487 amino acids in length and contains an N-terminal signal peptide,
followed by a VWFA domain, a TM domain, and a cytosolic tail. Mutations were identified in exons 3, 7, 8, and 12 and are shown relative
to affected protein domains. B, DNA sequence analysis of CMG-2 in individuals with ISH and JHF. Three homozygous mutations were identified:
GAArTAA (E220X) nonsense mutation in exon 8 of ISH1 family, GGCrGAC (G105D) missense mutation in exon 4 of JHF1 family, and
CTArCGA (L329R) missense mutation in exon 12 of JHF2 family. Both affected children in family ISH2 were compound heterozygotes:
ATTrACT (I189T) missense mutation (paternal allele) and a nucleotide insertion (P357insC) (maternal allele).

17 predicted exons and intron/exon boundaries. Here,
we describe the CMG-2-488 isoform that is conserved
with the originally cloned CMG-2-386 isoform (Bell
et al. 2001) but includes an inserted 100–amino acid
membrane-proximal region between the VWFA-like do-
main and the TM region, as well as 12 alternative amino
acids at the C-terminus (fig. 3A). PCR products were
sequenced in both directions with the ABI BigDye ter-
minator sequencing kit (Perkin Elmer), and data were
analyzed using Sequencher 4.1 (GeneCodes). We also
explored the possible structure-function effects of pa-
tient mutations by first identifying an appropriate model
template. On the basis of sequence analysis that dem-
onstrated 48% homology, chain A of the Alpha-X Beta2
Integrin I Domain (Protein Data Bank accession number
1N3Y) was chosen as a template, since the structure was
solved by X-ray diffraction to atomic resolution (fig. 4).

Nonconserved residues from this domain were mutated
in silico to the corresponding CMG-2 sequences with
the program O (Jones et al. 1991). The CMG-2 model
was energy minimized, and the effect of mutations on
energy minimization, surface accessibility, interatomicdis-
tances, and potential atomic interactions was evaluated
using the Molecular Operating Environment suite of pro-
grams (Chemical Coupling Group).

CMG2 mutations were identified in all affected indi-
viduals, and these mutations were predicted either to trun-
cate or to functionally disrupt the wild-type (WT) protein.
None of the mutations identified in any of the families
were present in the genomic DNA isolated from 50 un-
related control subjects (100 chromosomes). In family
ISH1, the affected individual was found to be homoal-
lelic for a nonsense mutation, a GAArTAA transversion
in codon 220 of exon 8 (E220X) (fig. 3). This mutation
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Figure 4 Molecular modeling of CMG-2 mutations: superposition of CMG-2 model (red) with chain A of the Alpha-X Beta2 Integrin I
Domain (PDB accession number 1N3Y) (blue). Nonconserved residues were mutated using the software program O (Jones et al. 1991), and
the CMG-2 model was energy minimized using Molecular Operating Environment software (A). The root mean square deviation of the CMG-2
model from the integrin template is ∼.103 nm, with greater variation in the loops and less variance in the conserved regions where the mutations
reside. Glycine 105 (B) was mutated to an aspartate (C), within the extracellular region and rendered with SPOCK and Raster3D (Merritt and
Bacon 1997). Isoleucine 189 (D) was mutated to threonine (E), and contours were provided by the calculated electron density. A cavity is formed,
as indicated by the purple asterisk (*) in panel E.

predicts the loss of the majority of the WT proteins, in-
cluding the TM and cytosolic domains (fig. 3).

DNA sequence analysis of family JHF1 determined the
presence of a homozygous change in codon 105 of exon
4, a GGCrGAC transition, which predicted the replace-
ment of a glycine by an aspartate (G105D) in the VWFA-

like domain (fig. 3). VWFA domains are found in a num-
ber of ECM proteins, including integrins, some collagens,
and the matrilins (Hohenester and Engel 2002; Whit-
taker and Hynes 2002). Indeed, mutations in the VWFA
domain of the matrilin-3 protein have been found else-
where to result in an osteochondrodysplasia, multiple
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Figure 5 CMG-2 mutations, resulting in altered CMG-2 protein
expression, as detected by western blotting. Two hundred ninety-three
cells were transfected with 1.5 mg of plasmid DNA (in six-well dishes)
with Lipofectamine 2000 and various CMG-2 WT and mutant con-
structs, as indicated. Following transfection, cells were lysed after 24
h with 0.5 ml SDS-PAGE sample buffer, containing mercaptoethanol,
and were treated at 100�C for 10 min. Thirty milliliters of sample was
loaded per lane on a 10% SDS-PAGE gel, and protein samples were
transferred to PVDF membranes and were probed with anti-CMG-2
affinity-purified antibodies (1 mg/ml), as described elsewhere (Bell et al.
2001). Closed arrowheads indicate the position of anti-CMG-2 reactive
mutant proteins. Solid arrow indicates the position of CMG-2 WT pro-
tein observed in 293 cells transfected with pCIneo-CMG2-WT.

epiphyseal dysplasia (MIM 607078) (Chapman et al.
2001). Although this domain is involved in ligand recog-
nition in non-ECM molecules, little is known about its
role in ECM-molecule function (Hohenester and Engel
2002). Structure alignment of the G105D mutation sug-
gests that the WT glycine residue maps to the carboxy-
terminal end of an alpha-helix containing the Schellman
motif (fig. 4) (Aurora and Rose 1998). Therefore, the re-
placement of glycine by aspartate, a nonconserved acidic
residue, would be strongly suspected of destabilizing the
critical helical “cap” of this secondary structure motif
and would argue for the pathogenicity of the mutation.

In family JHF2, we detected a homoallelic mutation in
codon 329 of exon 12, a CTArCGA transversion (fig.
3). It is significant that this is predicted to result in the
nonconserved replacement of a leucine residue by an argi-
nine (L329R) within the TM domain (fig. 3). This change
from hydrophobic to charged amino acid alters the cal-

culated hydropathy and charge profile of the TM domain.
Speculating on the pathophysiologic role of this muta-
tion by analogy with other TM protein regions, the al-
tered CMG-2 leucine is in the center of a stretch of five
contiguous leucines within the TM region and thus could
effect problems in cell-surface expression, affinity for
other TM regions or for ligand binding, and subsequent
signaling (Scott et al. 1998). Alternatively, if CMG-2 is
in a monomeric state, the introduction of an aspartate
may cause receptor aggregation by placing a buried charge
within the membrane.

It is surprising that the affected individuals in family
ISH2 were found to be compound heterozygotes for
CMG-2 disease mutations. In accord with the iden-
tified germline mutations, RNA isolated and directly
sequenced from cultured fibroblasts confirmed the ex-
istence of two transcripts (data not shown). First, each
individual possessed a 1-bp C-nucleotide insertion in
codon 357 of exon 13, predicting a frameshift muta-
tion, incorporation of a novel 12–amino acid carboxy-
tail, and a premature downstream stop codon (TGA;
P357insC). The P357insC truncation results in the loss
of the terminal 132 amino acid residues that constitutes
the cytoplasmic domain (fig. 3). Although no functional
roles have yet been defined for this region, it would be
expected that this truncated cytoplasmic domain is nor-
mally an important modulator in relaying signals across
the plasma membrane. In fact, two Wiskott-Aldrich syn-
drome protein–homology 1 domains are present in this
region (Bell et al. 2001), and, therefore, loss of both of
these domains could result in loss of actin cytoskeleton
interaction.

The second mutation, in codon 189 of exon 7, was
predicted to replace an isoleucine with a polar-threonine
(I189T) residue (fig. 3). For the I189T mutation, the larger
isoleucine-hydrophobic side chain is replaced by a threo-
nine, creating a smaller polar residue toward the interior
of the protein. We calculated that the I189T mutation
results in the production of an internal 4-nm3 cavity
within the protein (fig. 4E), thus completely altering the
hydrophobic forces within the protein (Takano et al.
2003). Ultimately, biochemical and structure-function
studies will be required to verify these predictions.

To examine the effects of patient-derived mutations
on protein synthesis, we generated cDNAs encoding all
identified CMG-2 protein mutants by site-directed mu-
tagenesis. The patient mutations were introduced using
the Quick-Change site-directed mutagenesis kit, accord-
ing to the manufacturer’s protocol (Stratagene), and all
constructs were sequenced in both orientations prior to
transfection into 293 cells. Western blots were performed
on cell lysates with an affinity–purified rabbit polyclonal
antibody directed to the CMG-2 VWFA domain (Bell et
al. 2001). As shown in figure 5, all of the patient-derived
CMG-2 cDNA constructs are expressed and translated.
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Figure 6 Crystal violet staining of adherent patient and control primary fibroblasts to laminin, collagen I, and collagen IV ECM. Cells
were plated in serum-free media at a density of cells/well and were allowed to adhere to laminin, collagen I, and collagen IV 24-well51 # 10
plates (BD Biosciences) for 75 min. Unbound cells were removed by washing with PBS, and adherent cells were fixed in ethanol (10 min), were
stained with 0.5% crystal violet (20 min), were washed extensively with water, and were solubilized with 800 ml 1% SDS. Relative adhesion
was quantified by monitoring the absorbance of released dye at 540 nm ( ). Experiments were repeated three times in quadruplicate. Cellsn p 4
are shown at 7.5# magnification. Bar charts indicate adhesion of patient cells compared with control cells.

It is most notable that, whereas WT CMG-2 protein
(pCIneo-CMG2-WT) (fig. 5) migrates at ∼55 kDa, the
E220X and P357insC mutations resulted in products mi-
grating at ∼20 kDa and ∼35–40 kDa, respectively. The
masses of both of these proteins were consistent with the
size of the predicted truncation products. It is interesting
that the P357insC-directed protein results in multiple
tightly migrating bands, which would suggest either post-
translational modification differences—possibly glycosy-
lation—or that the mutated protein is unstable and being
degraded.

Functional studies were then performed using patient
fibroblasts, the results of which suggested that altered
CMG-2/laminin interaction may play a role in disease
pathogenesis. The VWFA domain of the CMG-2 protein
that is produced as a recombinant protein in bacteria was
shown elsewhere to bind both laminin and type IV col-

lagen (Bell et al. 2001). Along with its homology to
Alpha-X Beta2 Integrin I Domain, this binding pattern is
suggestive of a potential role for CMG-2 in the modula-
tion of cell-matrix or cell-cell interactions, possibly in the
capacity of a matrix receptor. Therefore, we examined the
ability of fibroblasts of patients with JHF and ISH to
attach, spread, and grow on a variety of matrices. Pri-
mary dermal fibroblasts from patients JHF1 and ISH2
were plated on laminin, collagen I–, and collagen IV–
containing tissue culture plates (BD Biosciences), and the
relative adhesion was quantified (Ellerbroek et al. 2001).
JHF and ISH fibroblasts were unable to adhere or attach
themselves to a laminin matrix (fig. 6), whereas no meas-
urable differences were noted for attachment to collagen
types I and IV (fig. 6A and 6B).

Members of the laminin family of heterotrimeric glyco-
proteins that contain a, b, and g chains are major con-
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stituents of basement membranes, which are ECMs found
in close contact with individual cells and cell layers (Jones
et al. 2000). Acting through specific receptors, laminin is
crucial for the formation of direct contacts between the
ECM and cells. As would be expected, inherited defects
in laminins are associated with human disease (McGowan
and Marinkovich 2000). For example, epidermolysis
bullosa letalis (MIM 226700) is caused by mutations in
any of the three laminin-5–associated glycoproteins, a3
(LAMA3), b3 (LAMB3), or g2 (LAMC2) (Pulkkinen and
Uitto 1999). In addition, and beyond their structural
roles, laminins help control cellular activities by allowing
the bridging together of information between adjacent
cells through interaction with cell surface receptors. It
is striking that mutations in the epithelial-expressed, het-
erodimer-linked laminin-receptor proteins, integrin-b4
gene (ITGB4), and integrin-a6 gene (ITGA6) cause dis-
ease in a subset of these patients but with additional gas-
trointestinal manifestations: epidermolysis bullosa with
pyloric atresia (MIM 226730) (Vidal et al. 1995; Ruzzi
et al. 1997). Mutations in any component of dystroglycan,
a major receptor for a2-laminins in the muscle sarco-
lemma, result in a range of muscular dystrophies that can
be characterized by loss of basement-membrane architec-
ture and function (Colognato and Yurchenco 2000). Also,
basement-membrane assembly is thought to be regulated
by epithelial-mesenchymal interactions (Lonai 2003), and
CMG-2 may play a role in such interactions.

The discovery that CMG2 mutations result in the al-
lelic disorders JHF and ISH provides a noninvasive mo-
lecular diagnostic tool, defines these two diseases as be-
ing on either end of the same disease spectrum, and
highlights novel information on the in vivo function of
this integrin-like cell surface molecule and its role in key
developmental and physiological processes. The dermal,
gastrointestinal, and skeletal findings present in these
syndromes could result from dysregulation in basement-
membrane architecture, possibly arising from compro-
mised cell-matrix or cell-cell interactions. Histologic re-
ports have identified cells embedded within a fibrillo-
granular material with cellularity inversely proportional
to the age of the lesion and with abnormal accumulation
of extracellular deposits that apparently originate from
dermal blood vessels (Stucki et al. 2001). This strength-
ens the hypothesis that CMG-2 plays a role in basement
membrane–matrix homeostasis and architecture during
development and morphogenesis (Bell et al. 2001) and
provides the starting point for future studies.
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